Find the locus of foot of perpendicular drawn from centre to any tangent to the ellipse x2a2+y2b2=1
Let P (h,k) be the foot of perpendicular to a tangent y=mx+√a2m2+b2 from center
∴kh.m=−1⇒m=−hk∵P(h,k) lies on tangent
∴k=mh+√a2m2+b2 form equation (ii) & (iii), we get
(k+h2k)2=a2h2k2+b2⇒ locus is (x2+y2)2=a2x2+b2y2