Find the locus of mid-point of chord of
parabola y2 = 4x which touches the parabola x2 = 4y.
y3 − 2xy + 4=0
Let (h,k) be the point of chord of parabola y2 = 4x
so,equation of chord is
T = S1
yy1 − 2a(x+x1) = y21 − 4ax1
y(k) − 2a(x+h)=k2 − 4h
ky − 2x − k2 + 4h − 2h = 0
ky − 2x − k2 + 2h = 0 - - - - - - - - (1)
This chord touches the parabola x2 = 4y
It means given chord is a tangent to the parabola
x2 = 4y
Point of contact of chord of contact
ky − 2x − k2 + 2h = 0 & parabola x2 = 4y is
substituting y = x24 in equation (1)
k.x24 − 2x − k2 + 2h = 0
k4x2 − 2x − k2 + 2h
since,it touches the parabola;there should be only one root
discriminant(D)=0
b2 − 4ac = 0
4−4 × (k4).(−k2 + 2h)=0
1 − (k4)(−k2 + 2h)=0
k4 (−k2 + 2h)=4
For required locus replacing k=y & h=x
we get
y(−y2 + 2x)=4
−y3 + 2xy = 4
y3 − 2xy + 4=0