Find the locus of the centroid of a triangle whose vertices are (acost,asint),(bsint,−bcost) and (1,0), where T is the parameter.
given points are A(acost,asint),B(bsint,−bcost),C(1,0)
therefore the centroid of the triangle is (x,y)=(acost+bsint+13,asint−bcost+03)
so x=acost+bsint+13,y=asint−bcost+03
⇒3x−1=acost+bsint,3y=asint−bcost
now squaring and adding both equations we get
(3x−1)2+(3y)2=(acost+bsint)2+(asint−bcost)2
(acost+bsint)2+(asint−bcost)2=a2((cost)2+(sint)2)+b2((cost)2+(sint)2)+2ab.cost.sint−2ab.cost.sint
⇒(3x−1)2+(3y)2=a2+b2
this is the locus of the centroid