Given, ∣∣∣x+iy−2ix+iy+2i∣∣∣=√2
⇒|x+i(y−2)||x+i(y+2)|=√2
⇒√x2+(y−2)2√x2+(y+2)2=√2
Squaring both sides, we get
x2+(y−2)2=2{x2+(y+2)2}
⇒x2+y2−4y+4=2x2+2y2+8y+8
⇒x2+y2+12y+4=0
⇒x2+y2+12y+4+32=32
⇒x2+y2+12y+36=32
⇒x2+(y+6)2=32
⇒(x−0)2+{y−(−6)}2=(4√2)2
Which represents a circle with centre (0, -6) and radius 4√2.