Let the point of intersection be P(h,k)
Equation to tangent to x2a2+y2b2=1 is
y=mx±√a2m2+b2
It passes through (h,k)
k=mh±√a2m2+b2k−mh=±√a2m2+b2k2+m2h2−2kmh=a2m2+b2(h2−a2)m2−2mhk+k2−b2=0
This quadratic in m
m1+m2=2hkh2−a2......(i)m1m2=k2−b2h2−a2.......(ii)
tanα=m1−m21+m1m2tan2α=(m1−m2)2(1+m1m2)2=(m1+m2)2−4m1m2(1+m1m2)2
using (i) and (ii)
tan2α=(2hkh2−a2)2−4(k2−b2h2−a2)(1+k2−b2h2−a2)2tan2α=4h2k2−4(k2−b2)(h2−a2)(h2−a2)2(h2−a2+k2−b2)2(h2−a2)2
tan2α=4h2k2−4(h2k2−h2b2−a2k2+a2b2)(h2+k2−a2−b2)2
(h2+k2−a2−b2)2tan2α=4(h2b2+a2k2−a2b2)
(h2+k2−a2−b2)2=4cot2α(h2b2+a2k2−a2b2)
Replacing h by x and k by y
(x2+y2−a2−b2)2=4cot2α(x2b2+a2y2−a2b2)