x2a2+y2b2=1.....(i)
Let (h,k) be the mid point of the chord
Equation of chord when mid point is given is T=S′
xx′a2+yy′b2=x′2a2+y′2b2
xha2+ykb2=h2a2+k2b2
Making the equation of the homogenous with the equation of the chord
(xha2+ykb2)(h2a2+k2b2)=1
Substituing in (i)
x2a2+y2b2=⎛⎜ ⎜ ⎜ ⎜⎝(xha2+ykb2)(h2a2+k2b2)⎞⎟ ⎟ ⎟ ⎟⎠2(h2a2+k2b2)2x2a2+(h2a2+k2b2)2y2b2=(xha2+ykb2)2(h2a2+k2b2)2x2a2+(h2a2+k2b2)2y2b2=h2x2a4+k2y2b4+2hka2b2xy((h2a2+k2b2)2−h2a2)x2a2+((h2a2+k2b2)2−k2b2)y2b2−2hka2b2xy=0
The pair of line is perpendicular
∴a+b=01a2((h2a2+k2b2)2−h2a2)+1b2((h2a2+k2b2)2−k2b2)=01a2(h2a2+k2b2)2−h2a4+1b2(h2a2+k2b2)2−k2b4=01a2(b2h2+a2k2a2b2)2−h2a4+1b2(b2h2+a2k2a2b2)2−k2b4=0(b2h2+a2k2a2b2)2(1a2+1b2)=h2a4+k2b4(b2h2+a2k2a2b2)2a2+b2a2b2=b4h2+a4k2a4b4(a2+b2)(b2h2+a2k2)2=a2b2(b4h2+a4k2)
Replacing h by x and k by y
(a2+b2)(b2x2+a2y2)2=a2b2(b4x2+a4y2)
is the required equation of locus.