x2a2+y2b2=1
Let (h,k) be the mid point of the chord of the ellipse
Equation of chord when mid point is given is T=S′
xx′a2+yy′b2=x′2a2+y′2b2xha2+ykb2=h2a2+k2b2b2xh+a2ky=b2h2+a2k2b2hx+a2ky−b2h2−a2k2=0
Distance from centre = c
∣∣ ∣ ∣∣0(b2h)+0(a2k)−b2h2−a2k2√(b2h)2+(a2k)2∣∣ ∣ ∣∣=c
Squaring both sides
(b2h2+a2k2)2=c2((b2h)2+(a2k)2)
So the required locus is
(b2x2+a2y2)2=c2((b2x)2+(a2y)2)(b2x2+a2y2)2=c2(b4x2+a4y2)