Suppose the coordinates of the middle point of the chord PQ of ellipse x2a2+y2b2=1, be (α,β)
As length of PQ is 2c So the coordinates of P and Q may be taken as (α+ccosθ,β+csinθ) and (α−ccosθ,β−csinθ)
P,Q points lie on ellipse
(α+ccosθ)2a2+(β+csinθ)2b2=1⟶1
(α−ccosθ)2a2+(β−csinθ)2b2=1⟶2
1+2⟹2a2(α2+c2cos2θ)+2b2(β2+c2sin2θ)=2
⟹b2α2+a2β2−a2b2+c2(a2sin2θ+b2cos2θ)=0⟶3
1−2⟹4αccosθa2+4βcsinθb2=0
⟹sinθαb2=cosθ−βa2=1√α2b4+β2a4
sinθ=αb2√α2b4+β2a4,cosθ=−βa2√α2b4+β2a4
From 3, b2α2+a2β2−a2b2+c2⎛⎜
⎜
⎜
⎜⎝α2b4a2−β2a4b2(√α2b4+β2a4)2⎞⎟
⎟
⎟
⎟⎠=0
⟹(α2b4+β2a4)(α2b2+β2a2−a2b2)+c2a2b2(α2b2+β2a2)=0
By generalizing, the locus of (α,β) is
(x2b4+y2a4)(x2b2+y2a2−a2b2)+c2a2b2(x2b2+y2a2)=0
which is an ellipse