x2a2+y2b2=1
Let (h,k) be the mid point of chord.
Equation of chord when mid point is given is T=S′
xx′a2+yy′b2=x′2a2+y′2b2xha2+ykb2=h2a2+k2b2xha2(h2a2+k2b2)+ykb2(h2a2+k2b2)=1xha2b2h2+a2k2a2b2+ykb2b2h2+a2k2a2b2=1b2hxb2h2+a2k2+a2kyb2h2+a2k2=1.........(i)
Let (p,q) be pole w.r.t to this line
Equation of polar when pole is given is T=0
xx′a2+yy′b2−1=0xpa2+yqb2=1......(ii)
(i) and (ii) are both polar w.r.t to P , so by comparing both the equations
pa2=b2hb2h2+a2k2⇒p=a2b2hb2h2+a2k2yqb2=a2kb2h2+a2k2⇒q=a2b2kb2h2+a2k2
So the pole is P(a2b2hb2h2+a2k2,a2b2kb2h2+a2k2)
It lies on the auxiliary circle
x2+y2=a2(a2b2hb2h2+a2k2)2+(a2b2kb2h2+a2k2)2=a2a2b4h2(b2h2+a2k2)2+a2b4k2(b2h2+a2k2)2=1a2b4(h2+k2)=(b2h2+a2k2)2
Replacing h by x and k by y
a2b4(x2+y2)=(b2x2+a2y2)2
is the required equation of locus.