.
Let the on end of the chord be (acosθ,asinθ)
Other point must be (2h−acosθ,2k−asinθ).
(∵Midpointx=x1+x22, Midy=y1+y22).
⇒(2h−acosθ)2+(2k−asinθ)2=a2
⇒4h2−4ahcosθ+a2cos2θ+4k2−4aksinθ+a2sin2θ=a2
⇒4h2−4ahcosθ+a2+4k2−4aksinθ=a2
(∵sin2θ+cos2θ=1)
⇒ahcosθ+aksinθ=h2+k2−(1)
hcosθ+ksinθ=h2+k2a
chord subtends right angleat (c,0)
∴ Line joining (c,0)&(2h−acosθ,asinθ) and (c1o) & (2h−acosθ,2h−asinθ) are perpendicular.
So, product of slopes =−1
(0−2k+asinθ)(c−2h+acosθ)×(0−asinθ)(c−acosθ)=−1.
⇒−2k+asinθc−2h+acosθ=acosθ−c−asinθ
⇒2aksinθ−a2sin2θ=accosθ−c2−2ahcosθ+2ch+a2cos2θ−accosθ
2aksinθ−a2(sin2θ+cos2θ)=accosθ−c2+2ch−2ahcosθ−accosθ.
⇒2aksinθ−a2=2ch−c2−2ahcosθ
⇒2a(ksinθ+hcosθ)=2ch+a2−c2
From(1):
⇒2a(h2+k2)a=2ch+a2−c2.
⇒2h2+2k2=2ch+a2−c2.
⇒2h2+2k2−2ch+(c2−a2)=0 Ans.