wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the locus of the middle points of chords of the circle x2+y2=a2 which subtend a right angle at the point (c,0).

Open in App
Solution

Let mid point be (h,k).

Let the on end of the chord be (acosθ,asinθ)

Other point must be (2hacosθ,2kasinθ).

(Midpointx=x1+x22, Midy=y1+y22).

(2hacosθ)2+(2kasinθ)2=a2

4h24ahcosθ+a2cos2θ+4k24aksinθ+a2sin2θ=a2

4h24ahcosθ+a2+4k24aksinθ=a2

(sin2θ+cos2θ=1)

ahcosθ+aksinθ=h2+k2(1)

hcosθ+ksinθ=h2+k2a

chord subtends right angleat (c,0)

Line joining (c,0)&(2hacosθ,asinθ) and (c1o) & (2hacosθ,2hasinθ) are perpendicular.

So, product of slopes =1

(02k+asinθ)(c2h+acosθ)×(0asinθ)(cacosθ)=1.

2k+asinθc2h+acosθ=acosθcasinθ

2aksinθa2sin2θ=accosθc22ahcosθ+2ch+a2cos2θaccosθ

2aksinθa2(sin2θ+cos2θ)=accosθc2+2ch2ahcosθaccosθ.

2aksinθa2=2chc22ahcosθ

2a(ksinθ+hcosθ)=2ch+a2c2

From(1):

2a(h2+k2)a=2ch+a2c2.

2h2+2k2=2ch+a2c2.

2h2+2k22ch+(c2a2)=0 Ans.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chord Properties of Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon