Equation of normal to y2=4ax is
y=mx−2am−am3
Let the normal passes through N(h, k)
∴k=mh−2am−am3⇒am3+(2a−h)m+k=0
For given value's of (h, k) it is cubic in 'm' Let m1,m2&m3 are root's of above equation
∴m1+m2+m3=0........(i)
m1m2+m2m3+m3m1=2a−ha.........(ii)
m1m2m3=−ka.........(iii)
If two normal's are perpendicular
∴m1m2=−1From(3)m3=ka.........(iv)
From(2)−1+ka(m1+m2)=2a−ha........(v)
From(1)m1+m2=−ka........(vi)
from (5) & (6) we get
−1−k2a=2−ha⇒y2=a(x−3a)