We have,
x=acosθ
y=asinθ
On differentiating and we get,
dxdθ=−asinθ,dydθ=acosθ
On
dydx=dydθdxdθ=acosθ−asinθ=−cotθ
dydx=−cotθ
Equation of tangents
y−y1=dydx(x−x1)
⇒y−asinθ=−cosθsinθ(x−acosθ)
⇒ysinθ−asin2θ=−xcosθ+acos2θ
⇒xcosθ+ysinθ=a(sin2θ+cos2θ)
⇒xcosθ+ysinθ=a
At point (1):-
π3
xcosθ+ysinθ=a
⇒xcosπ3+ysinπ3=a
⇒x×12+y×√32=a
⇒x+√3y=2a
At point π2
xcosθ+ysinθ=a
⇒xcosπ2+ysinπ2=a
⇒x×0+y×1=a
⇒y=a
Hence, this is the answer.