Let the co-ordinate of
P be
(h,k).
Given
PA+PB=6
or, √h2+(k−2)2+√h2+(k+2)2=6
or, √h2+(k+2)2=6−√h2+(k−2)2
Squaring both sides we get,
or, h2+(k+2)2=36−12√h2+(k−2)2+h2+(k−2)2
or, (k+2)2−(k−2)2−36=−12√h2+(k−2)2
or, 8k−36=−12√h2+(k−2)2
or,(2k−9)=−3√h2+(k−2)2
or, (2k−9)2=9{(h2+(k−2)2}
or, 4k2−36k+81=9h2+9k2−36k+36
or, 5k2+9h2=45
or, h25+k29=1.
So, locus of P is x25+y29=1.