Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(-4, 0, 0) is equal to 10.
Let locus of P(x1,y1,z) is the required locus, so
AP + BP = 10
⇒√(x−4)2+(y−0)2+(z−0)2+√(x+4)2+(y−0)2+(z−0)2=10
\(\Rightarrow \sqrt{x^{2}+16-8x+y^{2}+z^{2}}=10-
√x2+8x+16+y2+z2
⇒x2+y2+z2−8x+16=(10)2+(x2+y2+z2+8x+16)−20√x2+y2+z2+8x+16
⇒ -8x+16-100-8x-16=-20 √x2+y2+z2+8x+16
⇒ -16x-100 = -20 √x2+y2+z2+8x+16
⇒−4(4x+25)=−20√x2+y2+z2+8x+16
⇒(4x+25)=5 √x2+y2+z2+8x+16
Squaring both the sides,
(4x+25)2=25(x2+y2+z2+8x+16)
⇒16x2+625+200x=25(x2+y2+z2+8x+16)
⇒16x2+625+200x=25x2+25y2+25z2+200x+400
⇒9x2+25y2+25z2−225=0 is the required locus.