⇒⎡⎢⎣2−110−34⎤⎥⎦A=⎡⎢⎣−1−3−101−2−1592215⎤⎥⎦⇒⎡⎢⎣2−110−34⎤⎥⎦[a11a12a13a21a22a23]2×3=⎡⎢⎣−1−3−101−2−1592215⎤⎥⎦⇒⎡⎢⎣2a11−a212a12−a222a13−a23a11a12a13−3a11+4a21−3a12+4a22−3a13+4a23⎤⎥⎦=⎡⎢⎣−1−3−101−2−1592215⎤⎥⎦⇒2a11−a21=−1⇒2a12−a22=−8⇒2a13−a23=−10⇒a11=1⇒a12=−2⇒a13=−5⇒−3a11+4a21=9⇒−3a12+4a22=22⇒−3a13+4a23=15So,a11=1a12=−2a13=−5a21=3a22=4a23=0Hence,matrixA=[1−2−5340]