It is given that:
X[123456]=[−7−8−9246]
The
matrix given on the R.H.S. of the equation is a 2×3 matrix and the one given on the L.H.S. of the equation is a 2×3 matrix.
Therefore, X has to be a 2×2 matrix.
Now, let X=[acbd]
Therefore, we have:
[acbd][123456]=[−7−8−9246]
⇒[a+4c2a+5c3a+6cb+4d2b+5d3b+6d]=[−7−8−9246]
Equating the corresponding elements of the two matrices, we have:
a+4c=−72a+5c=−83a+6c=−9b+4d=22b+5d=43b+6d=6
Now, a+4c=−7⇒a=−7−4c
∴2a+5c=−8⇒−14−8c+5c=−8
⇒−3c=6⇒c=−2
∴a=−7−4(−2)=−7+8=1
Now, b+4d=2⇒b=2−4d
∴2b+5d=4⇒4−8d+5d=4
⇒−3d=0
⇒d=0
∴b=2−4(0)=2
Thus, a=1,b=2,c=−2,d=0
Hence, the required matrix X is [1−220]