Find the matrix X so that X [123446]=[−7−8−9246].
Here, X[123446]=[−7−8−9246]
The matrix given on the RHS of the equation is a 2×3 matrix and the one given on the LHS of the equation is as a 2×3 matrix. Therefor, X has to be a 2×2 matrix. Now, let X=[acbd]Therefore,wehave[acbd][123456]=[−7−8−9246]⇒[a+4c2a+5c3a+6cb+4d2b+5d3b+6d]=[−7−8−9246]
Equating the corresponding elements of the two matrices, we have
a+4c=-7, 2a+5c =-8, 3a+6c=-9
b+4d=2, 2b+5d=4, 3b+6d=6
Now, a+4c=−7⇒a=−7−4c
2a+5c=−8⇒−14−8c+5c=−8⇒−3c=6⇒c=−2∴a=−7−4(−2)=−7+8=1
Now, b+4d=2⇒b=2−4d and 2b+5d=4⇒4−8d+5d=4
⇒−3d=0⇒d=0∴b=2−4(0)=2
Thus, a=1, b=2, c=-2, d=0
Hence, the required matrix X is [1−220].