Find the maximum and minimum values, if any, of the following function given by,
f(x)=9x2+12x+2
Given, function is f(x)=9x2+12x+2=9x2+12x+4−2
[we add and subtract 2 for making it perfet square]
=(9x2+6x+6x+4)−2=[3x(3x+2)+2(3x+2)]−2=[(3x+2)(3x+2)]−2=(3x+2)2−2
It can be observed that (3x+2)2≥0 for every xϵR
Therefore, f(x)=(3x+2)2−2≥−2 for every xϵR
The minimum value of f is attained when 3x+2=0
i.e., 3x+2=0⇒x=−23
∴ Minimum value of f=f(−23)=(3×−23+2)2−2=−2
For any value of x, f(x)≥−2, hence function f does not have a particular maximum value.