wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum and minimum values of the function f(x)=sinx+cos2x over the range 0<x<2π.

Open in App
Solution

f(x)=sinx+cos2x
f(x)=cosx2sin2x=0
cosx2sin2x=0
cosx2×2sinxcosx=0
cosx(14sinx)=0
Either cosx=0x=(2n+1)π2,nϵZ
or sinx=14
x=nπ+(1)nsin1(14)
0<x<2π
x=π2,3π2,sin1(14),πsin1(14)
are the critical points and values of f(x) at critical points are:
f(π2)=sinπ2+cos(2×π2)=0
f(x=3π2)=sin3π2+cos(2×3π2)=2
f(x=sin1(14))=sin(sin1(14))+cos(2×sin1(14))=1.125
f(x=πsin1(14))=0.625
So, Maximum value f(x)=1.125
Minimum value f(x)=2

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon