f(x)=sinx+cos2x
f′(x)=cosx−2sin2x=0
cosx−2sin2x=0
cosx−2×2sinxcosx=0
cosx(1−4sinx)=0
Either cosx=0⇒x=(2n+1)π2,nϵZ
or sinx=14
x=nπ+(−1)nsin−1(14)
0<x<2π
x=π2,3π2,sin−1(14),π−sin−1(14)
are the critical points and values of f(x) at critical points are:
f(π2)=sinπ2+cos(2×π2)=0
f(x=3π2)=sin3π2+cos(2×3π2)=−2
f(x=sin−1(14))=sin(sin−1(14))+cos(2×sin−1(14))=1.125
f(x=π−sin−1(14))=−0.625
So, Maximum value f(x)=1.125
Minimum value f(x)=−2