Let
f(x)=x+sin2x
f′(x)=1+2cos2x
For critical points,
1+2cos2x=0
Or
2cos2x=−1
cos2x=−12
2x=2π3,4π3
x=π3,2π3
Now
f(π3)=π3+sin(2π3)
=π3+√32 ...(i)
f(2π3)=2π3+sin(4π3)
=2π3−√32 ...(ii)
Hence
Maximum value is
π3+√32 and Minimum
Value is
2π3−√32