wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum area of an isosceles triangle inscribed in the ellipse x2a2+y2b2=1 with its vertex at one end of the major axis.

Open in App
Solution

Solution:
Consider the isosceles triangle ABC:
A(a,0),B(acosθ,bsinθ) and C(acosθ,bsinθ)
Area of ABC=12×BC× height of ABC
Height of ABC=a(1+cosθ)
BC=2bsinθ
or, =12×2bsinθ×a(1+cosθ)=absinθ(1+cosθ)
For maximum area of the triangle,
ddθ=abcosθ(1+cosθ)absin2θ=0
or, cosθ(1+cosθ)sin2θ=0
or, cosθ(1+cosθ)(1+cosθ)(1cosθ)=0
or, (1+cosθ)(cosθ1+cosθ)=0
or, (1+cosθ)(2cosθ1)=0
or, cosθ=1 or, cosθ=12
For maximum value, we take
cosθ=12 and sinθ=32
or, Maximum area =ab×32(1+12)=334ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon