Solution:
Consider the isosceles triangle ABC:
A(a,0),B(acosθ,bsinθ) and C(acosθ,−bsinθ)
Area of △ABC=12×BC× height of △ABC
Height of △ABC=a(1+cosθ)
BC=2bsinθ
or, △=12×2bsinθ×a(1+cosθ)=absinθ(1+cosθ)
For maximum area of the triangle,
d△dθ=abcosθ(1+cosθ)−absin2θ=0
or, cosθ(1+cosθ)−sin2θ=0
or, cosθ(1+cosθ)−(1+cosθ)(1−cosθ)=0
or, (1+cosθ)(cosθ−1+cosθ)=0
or, (1+cosθ)(2cosθ−1)=0
or, cosθ=−1 or, cosθ=12
For maximum value, we take
cosθ=12 and sinθ=√32
or, Maximum area =ab×√32(1+12)=3√34ab