Find the maximum area of an isosceles triangle inscribed in the ellipse x2a2+y2b2=1 with its vertex at one end of the major axis.
Let the equation of an ellipse x2a2+y2b2=1 then any point P on the ellipse is (a cos θ,b sin θ).
From P, draw PM⊥OX and produce it to meet the ellipse at Q, then APQ is an isosceles triangle, let S be its area, then
S=2×12×AM×MP=(OA−OM)×MP=(a−a cos θ).b sin θ
⇒S=ab(sin θ−sin θ cos θ)=ab(sin θ−12sin 2θ)
On differentiating w.r.t. θ, we get
dSdθ=ab(cos θ−cos 2θ)
Again differentiating w.r.t. θ, we get
d2Sdθ2=ab(−sinθ+2 sin 2θ)
For maxima or miinima, put dSdθ=0
⇒cosθ=cos 2θ⇒2θ=2π−θ
⇒θ=2π3
At θ=2π3,(d2Sdθ2)θ=2π3=ab[−sin2π3+2 sin(2×2π3)]
=ab[−sin(π−π3)+2 sin(π+π3)]=abb(−sinπ3−2 sinπ3)[∵sin(∵−π3)=sinπ3sin(π+π3)=−sin π3]=ab(−√32−2√32)=ab(−3√32)=−3√3ab2<0
∴ S is maximum, when 0=2π3
and maximum value of S=ab(sin2π3−12.2 sin2π3cos2π3)
[∵sin 2θ=2 sin θ cos θ]=ab[sin(π−π3)−sin(π−π3)cos(π−π3)]
=ab(sinπ3−sinπ3×(−cosπ3))=ab(sinπ3+sinπ3cosπ3)=ab(√32+√32×12)=ab(2√3+√34)=3√34ab sq unit
Thus, maximum area of isosceles triangle is 3√34ab sq unit.