wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum area of an isosceles triangle inscribed in the ellipse x2a2+y2b2=1 with its vertex at one end of the major axis.

Open in App
Solution

Let the equation of an ellipse x2a2+y2b2=1 then any point P on the ellipse is (a cos θ,b sin θ).
From P, draw PMOX and produce it to meet the ellipse at Q, then APQ is an isosceles triangle, let S be its area, then
S=2×12×AM×MP=(OAOM)×MP=(aa cos θ).b sin θ
S=ab(sin θsin θ cos θ)=ab(sin θ12sin 2θ)
On differentiating w.r.t. θ, we get
dSdθ=ab(cos θcos 2θ)
Again differentiating w.r.t. θ, we get
d2Sdθ2=ab(sinθ+2 sin 2θ)
For maxima or miinima, put dSdθ=0
cosθ=cos 2θ2θ=2πθ
θ=2π3
At θ=2π3,(d2Sdθ2)θ=2π3=ab[sin2π3+2 sin(2×2π3)]
=ab[sin(ππ3)+2 sin(π+π3)]=abb(sinπ32 sinπ3)[sin(π3)=sinπ3sin(π+π3)=sin π3]=ab(32232)=ab(332)=33ab2<0
S is maximum, when 0=2π3
and maximum value of S=ab(sin2π312.2 sin2π3cos2π3)
[sin 2θ=2 sin θ cos θ]=ab[sin(ππ3)sin(ππ3)cos(ππ3)]
=ab(sinπ3sinπ3×(cosπ3))=ab(sinπ3+sinπ3cosπ3)=ab(32+32×12)=ab(23+34)=334ab sq unit
Thus, maximum area of isosceles triangle is 334ab sq unit.


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chords and Pair of Tangents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon