The equation of the ellipse is given as,
x2a2+y2b2=1______(1)
Compare equation (1) with cos2θ+sin2θ=1.
xa=cosθ
⇒x=acosθ
yb=sinθ
⇒y=bsinθ
So, the points on the ellipse is (acosθ,bsinθ).
Consider the diagram shown above and draw a perpendicular PM to x-axis up to the point Q.
OM=acosθ
PM=bsinθ
Since ellipse is symmetrical about x-axis,
therefore PM=QM and hence ΔAPQ is isosceles.
Write the expression of the area of the triangle.
A=12×PQ×AM
=12×2PM×AM
=PM(OA−OM)
Simplify further by substituting the values,
A=bsinθ(a−acosθ)
=ab(sinθ−sinθcosθ)
=ab2(2sinθ−2sinθcosθ)
=ab2(2sinθ−sin2θ)
Differentiate both sides of the equation,
dAdθ=ab2(2cosθ−2cos2θ)=ab(cosθ−cos2θ)
Again differentiate the both sides of the equation,
d2Adθ2=ab(−sinθ+2sin2θ)
Now
dAdθ=0
⇒ab(cosθ−cos2θ)=0
⇒cosθ=cos2θ
⇒cosθ=cos(360∘−2θ)
Simplify further
θ=360∘−2θ
⇒3θ=360∘
⇒θ=120∘
at θ=120∘,
⇒d2Adθ2=ab(−sin120∘+2sin240∘)
=ab(−√32 −2√32 )
=−ab(3√32) <0
A is maximum at θ=120∘.
The expression for the maximum area is,
A=ab2(2sin120∘−sin240∘)
=ab2(2√32+√32)
=3√34ab
Thus, the maximum area is 3√34ab.