Find the maximum value of 2x3−24x+107 in the interval [1,3]. Find the maximum value of the same function in [-3,-1].
Let f(x)=2x3−24x+107
⇒f′(x)=6x2−24=6(x2−4)=6(x+2)(x−2)
For maxima or minima put f′(x)=0⇒6(x+2)(x−2)=0⇒x=2,−2
We first consider the interval [1,3].
So, we have to evaluate the value of f at the critical point x=2ϵ[1,3] and at the end points of [1,3].
At x=1,f(1)=2×13−24×1+107=85At x=2,f(2)=2×23−24×2+107=75At x=3,f(3)=2×33−24×3+107=89
Hence, the absolute maximum value of f(x) in the interval [1,3] is 89 occuring at x=3.
Next, we consider the function in the interval [-3, -1], then evaluate the value of f at the critical point x=−2ϵ[−3,−1] and at the end points of the interval [-3, -1]
At x=1,f(−1)=2(−1)3−24(−1)+107=−2+24+107=129At x=2,f(−2)=2(−2)3−24(−2)+107=−16+48+107=139At x=3,f(−3)=2(−3)3−24(−3)+107=−54+72+107=125
Hence, the absolute maximum value of f(x) in the interval [-3, -1] is 139 occuring at x=-2