1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Algebraic Identities
Find the maxi...
Question
Find the maximum value of
3
x
+
4
y
for
x
>
0
,
y
>
0
such that
x
2
y
3
=
6
.
Open in App
Solution
Let
z
=
3
x
+
4
y
3
x
+
4
y
is the given equation
x
2
y
3
=
6
y
3
=
6
x
2
or
x
2
=
6
y
3
x
=
√
6
y
3
/
2
z
=
3
√
6
y
3
/
2
+
4
y
We have to minimum
z
z
=
f
(
y
)
f
′
(
y
)
=
d
d
y
(
3
√
6
y
3
/
2
+
4
y
)
=
3
√
6
y
5
/
2
(
−
3
2
)
+
4
Put
f
′
(
y
)
=
0
i.e
y
=
9
√
6
2
y
5
/
2
=
0
=
y
=
9
√
6
y
5
/
2
y
5
/
2
=
9
√
6
8
=
y
3
=
91
×
6
64
=
243
32
Thus
f
(
y
)
is max at
y
=
3
2
=
3
√
6
3
√
3
−
2
√
2
+
4
−
3
2
=
4
+
6
=
10
Suggest Corrections
0
Similar questions
Q.
The greatest value of
x
2
y
3
where
x
>
0
,
y
>
0
and
3
x
+
4
y
=
5
is
Q.
Find graphically, the maximum value of
z
=
2
x
+
5
y
, subject to constraints given below:
2
x
+
4
y
≤
8
3
x
+
y
≤
6
x
+
y
≤
4
x
≥
0
,
y
≤
0.6
Q.
Maximum and minimise Z =3x -4y subject to
x
−
2
y
≤
0
,
−
3
x
+
y
≤
4
,
x
−
y
≤
6
and
x
,
y
≥
0
Q.
Maximize
z
=
3
x
+
5
y
, Subject to
x
+
4
y
≤
24
,
3
x
+
y
≤
21
,
x
+
y
≤
9
,
x
≥
0
. Also find maximum value of
z
.
Q.
Find the maximum and minimum value of 2x + y subject to the constraints:
x + 3y ≥ 6, x − 3y ≤ 3, 3x + 4y ≤ 24, − 3x + 2y ≤ 6, 5x + y ≥ 5, x, y ≥ 0.