Find the maximum value of 5−(2x2−8x+6).
25
The value of (5−y) will be maximum when y is minimum.
where, y = 2x2−8x+6
y is a quadratic equation of the form ax2+bx+c with a = +2, b= (-8) and c= 6.
When a > 0, the maximum value of y is obtained when x=−b2a.
In our case, a>0, so,
x=−(−8)(2×2)=2.→y=(2×22)−(8×2)+6→y=8−16+6=−2→y=2
So,maximum value of 5−y=(5−(−2))=25.