The is a problem of L−C oscillations.
Charge stored in the capacitor oscillates simple harmonicaly as
Q=Q0sin(ωt±ϕ)
Here, Q0= maximum value of Q=200μC
=2×10−4C
ω=1√LC
1√(2×10−3)(5.0×10−6)=104s−1
Let at t=0,Q=Q0
then Q(t)=Q0cosωt.......(i)
I(t)=dQdt=−Q0ωsinωt.....(ii)
and dI(t)dt=−Q0ω2cos(ωt).......(iii)
I(t)=−Q0ωsinωt
∴ Maximum value of I is Q0ω
Imax=Q0ω
=(2.0×10−4)(104)
Imax=2.0A