wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum value of the function x2+14x+9x2+2x+3 over R.

Open in App
Solution

Let y=x2+14x+9x2+2x+3
diff. w. r. to x
dydx=(x2+2x+3)(2x+19)(x2+14x+9)(2x+2)(x2+2x+3)2
dydx=(2x3+14x2+4x2+28x+6x+42)(2x3+2x2+28x2+28x+18x+18)(x2+2x+3)2
dydx=(2x3+18x2+34x+42)(2x3+30x2+46x+18)(x2+2x+3)2
dydx=2x3+18x2+34x+422x330x246x18(x2+2x+3)2
dydx=12x212x+24(x2+2x+3)2_________(i)
for max & min
dydx=0.
12x212x+24(x2+2x+3)2=0
12x212x+24=0
12(x2x2)=0x2x2=0x22x+x2=0x(x2)+1(x2)=0(x+1)(x2)=0x=1,2
when x=-1
y=(1)2+14(1)+9(1)2+2(1)+3
=119+912+3
=101942
=42
=2
when x=2
y=22+14×2+922+2×2+3=4+28+94+4+3=32+911=4111y=4111
Hence,
Max value
y=4111

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ratio and Proportion
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon