Let
y=x2+14x+9x2+2x+3diff. w. r. to x
dydx=(x2+2x+3)(2x+19)−(x2+14x+9)(2x+2)(x2+2x+3)2
dydx=(2x3+14x2+4x2+28x+6x+42)−(2x3+2x2+28x2+28x+18x+18)(x2+2x+3)2
⇒dydx=(2x3+18x2+34x+42)−(2x3+30x2+46x+18)(x2+2x+3)2
⇒dydx=2x3+18x2+34x+42−2x3−30x2−46x−18(x2+2x+3)2
⇒dydx=−12x2−12x+24(x2+2x+3)2_________(i)
dydx=0.
⇒−12x2−12x+24(x2+2x+3)2=0
⇒−12x2−12x+24=0
⇒−12(x2−x−2)=0⇒x2−x−2=0⇒x2−2x+x−2=0⇒x(x−2)+1(x−2)=0⇒(x+1)(x−2)=0⇒x=−1,2
when x=-1
y=(−1)2+14(−1)+9(−1)2+2(1)+3
=1−19+91−2+3
=10−194−2
=−42
=−2
when x=2
y=22+14×2+922+2×2+3=4+28+94+4+3=32+911=4111y=4111
Hence,
Max value
y=4111