wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Find the maximum value of
i) 4sin2x+3cos2x+sinx2+cosx2,
ii) 5cosθ+3cos(θ+π3)+3.

Open in App
Solution

According to the question,
(i)f(x)=4sin2x+3cos2x+sinx2+cosx2=4(1cos2x)+3cos2x+sinx2+cosx2=44cos2x+3cos2x+sinx2+cosx2=(4cos2x)+(sinx2+cosx2)0cos2x134cos2x4and,2sinx2+cosx22max.value=4+2(ii)f(x)=5cosθ+3cos(θ+π3)+3f(x)=5cosθ+3(cosθcosπ3sinθsinπ3)+3=5cosθ+3(cosθ12sinθ32)+3=5cosθ+32cosθ332sinθ+3=132cosθ332sinθ+3Max.value=c+a2+b2=3+1694+2743+7=10So,thatthe,Min.value=4+2,andMax.value=10

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon