Step 1: Finding mean
Let,
a = assumed mean be = 64
h = common factor = 1 di = step deviation
xifidi=xi−ahd2ifidifid2i60260−641=−416−4×2=−816×2=3261161−641=−39−3×1=−39×1=9621262−641=−24−2×12=−2412×4=48632963−641=−11−1×29=−2929×1=29642564−641=000×25=025×0=0651265−641=111×12=1212×1=12661066−641=242×10=2010×4=4067467−641=393×4=124×9=3668568−641=4164×5=205×16=80∑fi=100∑fidi=0∑fid2i=286
Mean (¯¯¯x) = assumed mean +∑fidi∑fi×h
Mean (¯¯¯x)=64+0100×1=64
Step 2: Finding standard deviation
Standard deviation (σ)=h∑fi√(∑fi).(∑fid2i)−(∑fidi)2
⇒σ=1100√100×286−(0)2
⇒σ=1100√28600
⇒σ=169.1100=1.691
hence, the mean is 64 and the standard deviation is 1.691.