Finding mean
xififixi923276932186973291982196102661210433121093327∑fi=22∑xifi=2200
Mean ¯¯¯x=∑xifi∑fi
⇒¯¯¯x=220022
⇒¯¯¯x=100
Finding variance and standard deviation
For xi=92,fi=3,¯¯¯x=100,xi−¯¯¯x=92−100=−8, (xi−¯¯¯x)2=(−8)2=64, fi(xi−¯¯¯x)2=3×64=192
xifixi−¯¯¯x(xi−¯¯¯x)2fi(xi−¯¯¯x)2923−864192932−74998973−3927982−248102624241043416481093981243∑fi=22∑fi(xi−¯¯¯x)2=640
Variance (σ2)=∑fi(xi−¯¯¯x)2∑fi
(σ)2=64022
(σ)2=29.09
Hence, the mean is 100 and the variance is 29.09.