Find the mean and variance for the first n natural numbers.
Here x = 1, 2, 3, 4,.....,n
∴∑x=1+2+3+4+...+n=n(n+1)2
∴Mean(¯¯¯x)=n(n+1)2n=(n+1)2
∑x2=(1)2+(2)2+(3)2+(4)2+...+n2
=n(n+1)(2n+1)6
Variance (σ)2=N∑x2−(∑x)2N2
=n×n(n+1)(2n+1)6−[n(n+1)2]2n2
= n×n(n+1)(2n+1)6−[(n+1)24]n2
=4n2+6n+2−3n2−6n−312=n2−112