f(x)={αe−αxifx>00otherwise
E(X)=∫∞−∞xf(x)dx=∫∞0x(α)(e−αx)dx
=α∫∞0xe−αxdx=α(1)α2=1α
[By Bernoulli's formula ∫∞0xne−αxdx=nan+1]
E(X2)=∫∞0x2(αe−αx)dx
[∫∞0xne−αxdx=nan+1]=α∫∞0x2e−αxdx=α(2)α3=2α2
[By Bernoulli's formula]
Mean=E(X)=1α
Variance =E(X2)−[E(X)]2=2α2−1α2=1α2