Find the mean deviation from the mean for the following data :
(i) xi579101215fi862226
(ii) xi510152025fi74635
(iii) xi1030507090fi42428168
(iv) Size2021222324Frequency64514
(v) Size13579111315Frequency334147434
xifiCF|xi−M|fi|xi−M|588|5−7|=2167614|7−7|=0009216|9−7|=20410218|10−7|=30612220|12−7|=51015626|15−7|=848Total∑fi=26∑fi|xi−M|=84
Here, N=∑fi=26 even
Median M=N2th observation+(N2+1)th observation2
262th observation+(262+1)th observation2
=13th observation + 14th observation2
∴ Mean deviation about median =∑fi|xi−M|∑fi=8426=3.23
xififixi|xi−¯x|fi|xi−¯x|5735|5−14|=96310440|10−14|=41615690|15−14|=10620360|20−14|=618255125|25−14|=1155Total∑fi=25350158
Mean ¯=∑fixi∑fi=35025=14
∴ Mean deviation about mean =∑fi|xi−¯x|∑fi=15825=6.32
xififixi|xi−¯x|fi|xi−¯x|10440|10−50|=401603024720|30−50|=2048050281400|50−50|=0000070161120|70−50|=20320908720|90−50|=40320Total∑fi=80∑fixi=40001280
Mean ¯=∑fixi∑fi=400080=50
∴ Mean deviation about mean =∑fi|xi−¯x|∑fi=128080=16
SizeFrequencyfixidi=|xi−x|fidi2061201.659.90214840.652.602251100.351.75231231.351.35244962.359.40Total2043325
Now, ¯x=∑fixi∑fi=43320=21.65
M.D.=∑fi|xi−¯x|∑fi=2520=1.25
xififixi|xi−¯x|−|xi−8|fi|xi−¯x|133|1−8|=721339|3−8|=5155420|5−8|=31271498|7−8|=1149763|9−8|=1711444|11−8|=31213339|13−8|=51515460|15−8|=728Total∑fi=42∑fixi=336124
Now, ¯x=∑fixi∑fi=33642=8
M.D.=∑fi|xi−¯x|∑fi=12442=2.95