Find the mean of the following data, using step-deviation method:
Class5−1515−2525−3535−4545−5555−6565−75Frequency61016152487
Let us choose
a = 40, h = 10,
then di = xi - 40 and ui = (xi−40)/10
Using Step-deviation method, the given data is shown as follows:
Class | Frequency (fi) | Class mark (xi) | di= xi- 40 | ui = xi−40/10 | fiui |
5 - 15 | 6 | 10 | -30 | -3 | -18 |
15 - 25 | 10 | 20 | -20 | -2 | -20 |
25 - 35 | 16 | 30 | -10 | -1 | -16 |
35 - 45 | 15 | 40 | 0 | 0 | 0 |
45 - 55 | 24 | 50 | 10 | 1 | 24 |
55 - 65 | 8 | 60 | 20 | 2 | 16 |
65 - 75 | 7 | 70 | 30 | 3 | 21 |
Total | ∑fi=86 | ∑(fi×ui)=7 |
The mean of given data is given by
¯x=a+(∑fiui/∑fi)×h
= 40 + (7/86) × 10
= 40 + 70/86
= 40 + 0.81
= 40.81
Thus, the mean is 40.81.