Marks | Frequency (fi) | Deviation (di)
di = (xi - 150) |
(fidi) | |
110 | 10 | -40 | -400 | |
130 | 20 | -20 | -400 | |
150 = A | 30 | 0 | 0 | |
170 | 15 | 20 | 300 | |
190 | 5 | 40 | 200 | |
Total | ∑fi=80 | ∑(fi×di)=−300 |
Let A = 150 be the assumed mean. Then we have:
Mean, ¯x=A+[∑(fi×di)/∑fi]
= 150 + (-300/80)
= 150 - 3.75
Therefore, ¯x= 146.25