Find the mean, standard deviation and variance of first n natural numbers.
First n natural numbers are 1,2,3,...,n.
Mean, ¯x=(1+2+3+⋯+n)n=1n.12n(n+1)=12(n+1)
Sum of first n natural number
[∵ (1+2+3+⋯+n)=12n(n+1)]
∴ variance, σ2=∑x2in−¯x2
=∑n2n−{12(n+1)}2
=1n. n(n+1)(2n+1)6−14(n+1)2
[∵ ∑n2=16n(n+1)(2n+1)]
={(n+1)(2n+1)6−(n+1)24}
=(n+1).{(2n+1)6−(n+1)4}
=(n+1)(n−1)12=(n2−1)12
∴ variance, σ2=(n2−1)12
Standard deviation, σ=√n2−112=12.√n2−13