Find the mean, variance and the standard deviation for the following data:
5, 9, 8, 12, 6, 10, 6, 8
Here n = 8.
Mean ¯x=18 (5+9+8+12+6+10+6+8)=648=8
The values of (xi−¯x) are
-3, 1, 0, 4, -2, 2, -2, 0.
∴ (xi−¯x)=(9+1+0+16+4+4+4+0)=38
∴ variance,σ2=∑(xi−¯x)2n=388=194=4.75
and, standard deviation, σ=√4.75=2.17
∴ mean = 8, variance = 4.75 and standard deviation = 2.17.
Short Cut Method
For simple ungrouped data, we have
σ2=1n.{∑ni=1(xi−¯x)2}
=1n.{∑ni=1(x2i−2xi¯x+¯x2)}
=∑x2in−2¯x(∑xin)+n¯x2n
=∑x2in−2¯x.¯x+¯x2=∑x2in−¯x2