Comparing the equation
2x2+7xy+3y2=0 with
ax2+2hxy+by2=0, we get,
a=2,2h=7, i.e.h=72 and b=3.
Let θ be the acute angle between the lines.
∴tanθ=∣∣∣2√h2−aba+b∣∣∣
=∣∣
∣
∣
∣
∣
∣∣2√(72)2−2(3)2+3∣∣
∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣
∣
∣∣2√(494)−65∣∣
∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣
∣
∣∣2√(49−244)5∣∣
∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣
∣
∣∣2√(254)5∣∣
∣
∣
∣
∣
∣∣
=2×(52)5
=55
tanθ=1
∴θ=tan1=45o
∴θ=45o