Find the measure of ∠ADC in the given figure.
60∘
In △ABD,
∠DAB+∠BDA+∠ABD=180∘
(Sum of all the interior angles of a triangle is 180∘)
⇒∠BDA=180∘−∠DAB−∠ABD⇒∠BDA=180∘−60∘−90∘⇒∠BDA=30∘
Since BC = CD, △BCD is an isosceles triangle.
∴ ∠CBD=∠CDB
(Angles opposite to equal sides are equal)
In △BCD,
∠BCD+∠CBD+∠CDB=180∘
(Sum of all the interior angles of a triangle is 180∘)
⇒∠BCD+2×∠CDB=180∘
⇒120∘+2×∠CDB=180∘
⇒∠CDB = 180∘−120∘2
⇒∠CDB=30∘
From the figure, we know that,
∠ADC=∠ADB+∠CDB
⇒∠ADC=30∘+30∘
⇒∠ADC=60∘