In △ABC,
Given: AB = AC
Hence, ∠ABC=∠ACB (Isosceles triangle property)
Now, ∠BAF=∠ACB+∠ABC (Exterior angle propery)
128=2∠ACB
∠ACB=64∘
Thus, ∠ACB=∠ABC=64∘
Now, In △CBD,
Given, CD = BC
Thus, ∠CDB=∠CBD=64∘ (Isosceles triangle property)
Sum of angles of the triangle = 180
∠CDB+∠CBD+∠BCD=180
64+64+∠BCD=180
∠BCD=52∘
∠BCA=∠BCD+∠DCE
64=52+∠DCE
∠DCE=12∘