Equation of the given lines are
x−63=y−7−1=z−41=r...(1) (Let)
x−3=y+92=z−24=r′.......(2) (Let)
Point on line (i) P(3r+6,−r+7,r+4).....(3)
Point on line (ii) Q(−3r′,2r′−9,4r′+2)......(4)
Direction ratios of the line PQ
3r+6+3r′1,−r+7−2r′+9,r+4−4r′−2
If the minimum distance between lines is PQ then PQ will be perpendicular to both the lines.
3(3r+3r′+6)−1(−r−2r′+16)+1(r−4r′+2)=0
9r+9r′+18+r+2r′−16−r−4r′+2=0
11r+7r′+4=0.....(5)
−3(3r+3r′+6)+2(−r−2r′+16)+4(r−4r′+2)=0
7r+29r′−22=0.......(5)
From equation (5) and (6)
r−154−116=r′28+242=1319−49
r−270=r′270=1270
r=−1 and r′=1
Putting values in equation (3) and (4)
P(3,8,3) and Q(3,−7,6)
Minimum distance=PQ
=√(3+3)2+(8+7)2+(3−7)2
=√36+229+9=3√30