Find the minimum value of 10 cos2x - 6 sinxcos x + 2 sin2x
In this case also,we will try to convert the expression in the form a cosθ + bsinθ.
We see sinxcosx, cos2x and sin2x in the expression.So we will simplify the terms with sin2x and cos2x
10cos2x - 6sinx cosx + 2sin2x
= 8 cos2x - 3 sin2x + 2
= 4 (1 + cos2x) - 3 sin2x + 2
= 6 + 4 cos2x - 3sin2x
⇒ Maximum value = 6 + maximum value of (4 cos2x - 3 sin2x)
= 6 + 5
= 11
Minimum value = 6 + minimum value of (4 cos2x - 3 sin2x)
= 6 + (-5)
= 1
Key steps : (1) Expressing the given expression in terms of sin2x and cos2x