The correct option is A 2
y=x3−3x2+6
dydx=3x2−6x
dydx=0, condition for existence of maxima or minima
⇒3x2−6x=0⇒x=0,2
d2ydx2=6x−6
Checking the double derivative at x=0,2
[d2ydx2]x=0=−6,
Hence d2ydx2<0
∴ Maxima exists at x=0
Similarly, [d2ydx2]x=2=6,
Hence, d2ydx2>0
∴ Minima exists at x=2
∴ymin=23−3(2)2+6=2