wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the minimum value of cos2θ+ sec2θ

Open in App
Solution

Let f(θ)=y=cos2θ+sec2θ=cos4θ+1cos2θ
For maxmin1
dydx=0
dydx=cos2θ(4cos3θ)sinθ+2cosθsinθ(cos4θ+1)(cos4θ+1)2=0
So, 2cosθsinθ[1+cos4θ2cos4θ]=0
2cos4θsinθ(1cos4θ)=0
sinθ=0,cosθ=0
So, cosθ=±1
So, θ=nπ,θ=(2n+1)π2,θ=nπ
f(nπ)=1+11=2
f((2n+1)π2)=0+10=
So, minima arrives at θ=nπ
Thus, minimum value=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon