wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the minimum value of sinx+cosx+cosxsinxcos4xsin4x

Open in App
Solution

Let y=sinx+cosx+cosxsinxcos4xsin4x....(1)
we have to find minimum value of y
y=∣ ∣sinx+cosx+cosxsinx(cos2x+sin2x)(cos2xsin2x)∣ ∣
y=sinx+cosx+cosxsinx(cosxsinx)(cosx+sinx)
y=(sinx+cosx)2+1cosx+sinx...... on expanding
y=2+2sinxcosxcosx+sinx......(2)
In order to minimize y= we have to maximize denominator Multyply & divide by 2
2(cosx2+sinx2)2(sin(x+π4))
now equation (2) becomes
y=∣ ∣ ∣ ∣2(1+sinxcosx)sin(x+π4)∣ ∣ ∣ ∣.....(3)
we know sin(x+π4)1
x+π4π2[x=π4]
Hence at x=pi4 value of y in minimum
now from equation (3)
y=∣ ∣ ∣ ∣ ∣2(1+12×12)sin(π2)∣ ∣ ∣ ∣ ∣
y=2(32)=32
(y=32)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon