Let y=∣∣∣sinx+cosx+cosx−sinxcos4x−sin4x∣∣∣....(1)
we have to find minimum value of y
⇒ y=∣∣
∣∣sinx+cosx+cosx−sinx(cos2x+sin2x)(cos2x−sin2x)∣∣
∣∣
⇒ y=∣∣∣sinx+cosx+cosx−sinx(cosx−sinx)(cosx+sinx)∣∣∣
⇒ y=∣∣∣(sinx+cosx)2+1cosx+sinx∣∣∣...... on expanding
y=∣∣∣2+2sinxcosxcosx+sinx∣∣∣......(2)
⇒ In order to minimize y= we have to maximize denominator Multyply & divide by √2
√2(cosx√2+sinx√2)⇒√2(sin(x+π4))
now equation (2) becomes
y=∣∣
∣
∣
∣∣√2(1+sinxcosx)sin(x+π4)∣∣
∣
∣
∣∣.....(3)
we know sin(x+π4)≤1
x+π4≤π2⇒[x=π4]
⇒ Hence at x=pi4 value of y in minimum
⇒ now from equation (3)
y=∣∣
∣
∣
∣
∣∣√2(1+1√2×1√2)sin(π2)∣∣
∣
∣
∣
∣∣
y=√2(32)=3√2
⇒ (y=3√2)