Let z=1+i
|z|=|√3+i|
⇒|z|=√(3)2+12
⇒|z|=√2 …(1)
Let α be acute angle such that
tanα=|Im(z)||Re(z)|
⇒tanα=|1||√3|
⇒α=π6
Since, z lies in the first quadrant,
∴arg(z)=α
arg(z)=π6
Hence, Polar form of z
z=|z|[cosarg(z)+isinarg(z)]
⇒z=√2(cosπ6+isinπ6)
Therefore, Polar form of (√3+i) is 2(cosπ6+isinπ6)