Let z=−161+i√3
⇒z=−161+i√3×1−i√31−i√3
⇒z=−16+16√3i12−3i2
⇒z=−4+4√3i …1
∵z=−4+4√3i
⇒|z|=√(−4)2+(4√3)2
⇒|z|=√16+48
⇒|z|=8 …(2)
Let α be acute angle such that-
tanα=|Im(z)||Re(z)|
⇒tanα=|4√3||−4|
⇒tanα=√3
⇒α=π3
Since, z lies on the 2nd quadrant,
∴arg(z)=π−α
⇒arg(z)=π−π3
⇒arg(z)=2π3
Hence, Polar form of z
z=|z|[cosarg(z)+isinarg(z)]
⇒z=8(cos2π3+isin2π3)