Given data:
let z=1+2i1−3i
Do rationalisation
on multiplying numerator and denominator by
(1+3i)
z=1+2i1−3i×1+3i1+3i
=1+3i+2i+6i2(1)2−(3i)2
=1+5i−61+9
=−5+5i10 {∵i2=−1}
=−12+12i
z=−12+12i
Apply x =rcosθ and y=r sinθ
Using the diagram
r cosθ=−12 .....(i)
And r sinθ=12 .....(ii)
Modulus of complex number
Squaring and adding equation (1) and equation (2)
⇒r2cos2θ+r2sin2θ=(−12)2+(12)2
⇒r2(cos2θ+sin2θ)=14+14 {∵sin2θ+cos2θ=1}
z=−12+12i
r cos θ=−12.....(i)
And r sinθ=12.....(ii)
⇒r2=12 [∵cos2θ+sin2θ=1]
⇒r=1√2 {∵r is always positive}
Argument of the complex number
Divide equation (2) by equation (1)
⇒rsinθrcosθ=12−12
⇒tanθ=−1
⇒θ=π−π4=3π4 { As θ lies in the second quadrant}
∴ the modulus and argument of the given complex number are 1√2 and 3π4 respectively