Find the modulus and argument of the complex number 1+2i1−3i
Let z=1+2i1−3i×1+3i1+3i=1+3i+2i+6i21−9i2=−5+5i10=−1+i2
Now z=−12+i1=r(cos θ+i sinθ)
∴ r cos θ=−12 and r sin θ=12...(i)
Squaring both sides of (i) and adding
r2(cos2θ+sin2θ)=14+14
⇒ r2=12 ⇒ r=1√2
∴ 1√2 cos θ=−12
and 1√2sin θ=12
⇒ cosθ=−1√2 and sin θ=1√2
Since sin θ is positive and cos θ is negative
∴ θ lies in second quadrant
∴ θ=π−π4=3π4
∴ Modulus of z=1√2 and argument of z=3π4